The Algorithms logo
The Algorithms
AboutDonate

Amicable Number

S
A
b
a
package com.thealgorithms.maths;

/**
 * Amicable numbers are two different numbers so related that the sum of the
 * proper divisors of each is equal to the other number. (A proper divisor of a
 * number is a positive factor of that number other than the number itself. For
 * example, the proper divisors of 6 are 1, 2, and 3.) A pair of amicable
 * numbers constitutes an aliquot sequence of period 2. It is unknown if there
 * are infinitely many pairs of amicable numbers. *
 *
 * <p>
 * link: https://en.wikipedia.org/wiki/Amicable_numbers *
 *
 * <p>
 * Simple Example : (220,284) 220 is divisible by {1,2,4,5,10,11,20,22,44,55,110
 * } <- Sum = 284
 * 284 is divisible by -> 1,2,4,71,142 and the Sum of that is. Yes right you
 * probably expected it 220
 */
public class AmicableNumber {

    public static void main(String[] args) {
        AmicableNumber.findAllInRange(1, 3000);
        /* Res -> Int Range of 1 till 3000there are 3Amicable_numbers These are  1: = ( 220,284)
    2: = ( 1184,1210) 3: = ( 2620,2924) So it worked	*/
    }

    /**
     * @param startValue
     * @param stopValue
     * @return
     */
    static void findAllInRange(int startValue, int stopValue) {
        /* the 2 for loops are to avoid to double check tuple. For example (200,100) and (100,200)
         * is the same calculation also to avoid is to check the number with it self. a number with
         * itself is always a AmicableNumber
         * */
        StringBuilder res = new StringBuilder();
        int countofRes = 0;

        for (int i = startValue; i < stopValue; i++) {
            for (int j = i + 1; j <= stopValue; j++) {
                if (isAmicableNumber(i, j)) {
                    countofRes++;
                    res.append("" + countofRes + ": = ( " + i + "," + j + ")"
                        + "\t");
                }
            }
        }
        res.insert(0, "Int Range of " + startValue + " till " + stopValue + " there are " + countofRes + " Amicable_numbers.These are \n ");
        System.out.println(res);
    }

    /**
     * Check if {@code numberOne and numberTwo } are AmicableNumbers or not
     *
     * @param numberOne numberTwo
     * @return {@code true} if {@code numberOne numberTwo} isAmicableNumbers
     * otherwise false
     */
    static boolean isAmicableNumber(int numberOne, int numberTwo) {
        return ((recursiveCalcOfDividerSum(numberOne, numberOne) == numberTwo && numberOne == recursiveCalcOfDividerSum(numberTwo, numberTwo)));
    }

    /**
     * calculated in recursive calls the Sum of all the Dividers beside it self
     *
     * @param number div = the next to test dividely by using the modulo
     * operator
     * @return sum of all the dividers
     */
    static int recursiveCalcOfDividerSum(int number, int div) {
        if (div == 1) {
            return 0;
        } else if (number % --div == 0) {
            return recursiveCalcOfDividerSum(number, div) + div;
        } else {
            return recursiveCalcOfDividerSum(number, div);
        }
    }
}